Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite
نویسندگان
چکیده
Sedimentary iron sulfide minerals play a key role in maintaining the oxygenation of Earth’s atmosphere over geological timescales; they also record critical geochemical information that can be used to reconstruct paleo-environments. On modern Earth, sedimentary iron sulfide mineral formation takes places in low-temperature environments and requires the production of free sulfide by sulfate-reducing microorganisms (SRM) under anoxic conditions. Yet, most of our knowledge on the properties and formation pathways of iron sulfide minerals, including pyrite, derives from experimental studies performed in abiotic conditions, and as such the role of biotic processes in the formation of sedimentary iron sulfide minerals is poorly understood. Here we investigate the role of SRM in the nucleation and growth of iron sulfide minerals in laboratory experiments. We set out to test the hypothesis that SRM can influence Fe-S mineralization in ways other than providing sulfide through the comparison of the physical properties of iron sulfide minerals precipitated in the presence and in the absence of the sulfate-reducing bacterium Desulfovibrio hydrothermalis AM13 under well-controlled conditions. X-ray diffraction and microscopy analyses reveal that iron sulfide minerals produced in the presence of SRM exhibit unique morphology and aggregate differently than abiotic minerals formed in media without cells. Specifically, mackinawite growth is favored in the presence of both live and dead SRM, when compared to the abiotic treatments tested. The cell surface of live and dead SRM, and the extracellular polymers produced by live cells, provide templates for the nucleation of mackinawite and favor mineral growth. The morphology of minerals is however different when live and dead cells are provided. The transformation of greigite from mackinawite occurred after several months of incubation only in the presence of live SRM, suggesting that SRM might accelerate the kinetics of greigite formation under strict anoxic conditions. Pyrite formation was not observed in any experiments. While SRM provide nearly all the sulfide to the Fe-S system at low temperatures, we also posit that SRM play an additional formative role in the size, morphology and potentially the mineralogy of iron sulfide minerals in sedimentary environments, therefore potentially influencing their reactivity. Attempting to reconstruct modern and ancient biogeochemical cycles based on the geochemistry of iron sulfide minerals formed under purely abiotic conditions should be therefore done with caution. 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
منابع مشابه
Transformation of mackinawite to greigite: An in situ X-ray powder diffraction and transmission electron microscope study
Synthetic mackinawite (tetragonal FeS) has been found to transform rapidly to greigite (Fe3S4) above ;373 K during heating experiments, as observed by in situ X-ray diffraction. Using monochromatic synchrotron radiation (l 5 0.60233 Å), we measured the unit-cell parameters of both synthetic mackinawite between 293 and 453 K and of greigite formed from this mackinawite between 293 and 593 K. The...
متن کاملGreigite: a true intermediate on the polysulfide pathway to pyrite
The formation of pyrite (FeS2) from iron monosulfide precursors in anoxic sediments has been suggested to proceed via mackinawite (FeS) and greigite (Fe3S4). Despite decades of research, the mechanisms of pyrite formation are not sufficiently understood because solid and dissolved intermediates are oxygen-sensitive and poorly crystalline and therefore notoriously difficult to characterize and q...
متن کاملSulphate Reducing Bacteria and Mackinawite Stability
Introduction: The formation of sedimentary iron monosulphides (mackinawite, greigite) and pyrite is strongly interlinked with bacterial sulphate reduction, and thus with the global geochemical Fe, S and C cycles [1, 2]. The inorganic formation and stability of FeS phases at T < 100 ̊C has been extensively studied due to their vital importance in the sedimentary pyrite formation processes [e.g., ...
متن کاملReaction sequence of iron sulfide minerals in bacteria and their use as biomarkers.
Some bacteria form intracellular nanometer-scale crystals of greigite (Fe3S4) that cause the bacteria to be oriented in magnetic fields. Transmission electron microscope observations showed that ferrimagnetic greigite in these bacteria forms from nonmagnetic mackinawite (tetragonal FeS) and possibly from cubic FeS. These precursors apparently transform into greigite by rearrangement of iron ato...
متن کاملA cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria.
Magnetotactic bacteria contain magnetosomes--intracellular, membrane-bounded, magnetic nanocrystals of magnetite (Fe(3)O(4)) or greigite (Fe(3)S(4))--that cause the bacteria to swim along geomagnetic field lines. We isolated a greigite-producing magnetotactic bacterium from a brackish spring in Death Valley National Park, California, USA, strain BW-1, that is able to biomineralize greigite and ...
متن کامل